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xii

   Preface    

   Viral hepatitis remains a major public health problem 
throughout the world. Hepatitis A virus infects 1–90% 
or more of the human population, and it varies accord-
ing to the socioeconomic, sanitary, and public health 
infrastructure of each country. Hepatitis B virus has 
infected one-third of the world population, with between 
350 and 400 million carriers of the virus, many of 
whom progress to chronic liver disease and hepatocel-
lular carcinoma. Hepatitis C virus is estimated to have 
infected 150–200 million people (probably a gross 
underestimate), with about 80% infected persistently, 
and this leads to serious sequelae including primary 
liver cancer. Infection with hepatitis D virus also occurs 
throughout the world and is hyperendemic in some 
countries, and hepatitis E is common and epidemic in a 
number of non-industrialized regions, with increasing 
evidence of zoonotic spread and sporadic infection in 
many countries. 

 Progress on all aspects of viral hepatitis is remarkably 
rapid, with many thousands of published accounts of 
original studies, and the mountain of new information 
is often bewildering and may be diffi cult to access. 
The pressing need for a fourth edition became clear, 
and the text has been revised and updated. The chapter 

on the history of hepatitis has been omitted (which is 
somewhat unfortunate because the future evolves from 
the past) in order to provide space for several new 
topics. 

 The fourth edition of  Viral Hepatitis  is designed to 
include a balanced and carefully distilled account of 
the more recent advances in this fi eld written by a con-
stellation of internationally recognized experts from 
many countries. We acknowledge their outstanding 
contributions, including those made by our two new 
co-editors, Professor Anna Lok and Professor Stephen 
Locarnini. 

 We hope that the book will prove useful to virologists, 
immunologists, specialists in infectious diseases, hepa-
tologists, gastroenterologists, and, of course, public 
health and occupational health physicians and aspiring 
scientists. It is a book for those addressing the manage-
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Introduction

Normally the liver has a low level of hepatocyte turno-
ver, but in response to modest hepatocyte loss, a rapid 
regenerative response occurs from all cell types in the 
liver to restore organ homeostasis (comprehensively 
reviewed in [1, 2]). More severe liver injury, particularly 
chronic repetitive injury (e.g., chronic viral hepatitis), is 
often associated with hepatocyte replicative senescence. 
This activates facultative stem cells of biliary origin that 
give rise to cords (the “ductular reaction”) of bipotential 
transit-amplifying cells (named oval cells [OCs] in 

rodents and HPCs in humans) that can differentiate into 
either hepatocytes or cholangiocytes. Moreover, the 
major primary tumors of the liver (hepatocellular carci-
noma [HCC] and cholangiocarcinoma [CC]) invariably 
arise in a setting of chronic inflammation that is accom-
panied by both hepatocyte regeneration and ductular 
reactions, and while it seems that the founder cell of CCs 
is a proliferating cholangiocyte, the morphological het-
erogeneity often observed in HCCs suggests that these 
tumors can arise from bipotential HPCs as well as more 
mature hepatocytes. HCCs also appear to possess sub-
populations of cancer stem cells, which are responsible 

Summary

In a healthy adult liver, the rate of cell turnover is very low. Following acute liver injury, restoration of parenchymal 
mass is achieved by proliferation of normally mitotically quiescent hepatocytes. However, chronic liver injury 
results in the loss of this proliferative capacity of the hepatocytes, as increasing numbers of cells become senescent. 
In this situation, there is activation of hepatic progenitor cells (HPCs) from within the intrahepatic biliary tree. 
These bipotential cells are capable of supplying biliary cells and hepatocytes. In animal models, there is some 
controversy regarding the relative contribution to parenchymal regeneration from these two compartments, but 
human studies are compatible with the suggestion that as the severity and chronicity of the liver injury increase, 
immature progenitor cells contribute more to regeneration than mature hepatocytes. We are now beginning to 
understand the molecular signals and niche requirements that govern their cell fate. Alongside the parenchymal 
regeneration in chronic liver injury, there is a stereotypical wound-healing response with activation of hepatic 
stellate cells (HSCs) into scar-forming myofibroblasts and deposition of collagen. This change in the extracellular 
matrix (ECM) affects the regenerative capacity of the liver, and excess scar tissue can impair liver regeneration 
from either hepatocytes or HPCs.

Viral Hepatitis, Fourth Edition. Edited by Howard C. Thomas, Anna S.F. Lok, Stephen A. Locarnini, and Arie J. Zuckerman.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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In humans, EpCAM+NCAM+ cells in the periportally 
located canals of Hering have been identified as puta-
tive HPCs and it is suggested that there are eight matu-
rational lineage stages moving from the periportal 
(progenitor) region to the perivenous region.

An important question remains: is the liver organized 
like the intestine, with a unidirectional flux of cells that 
are “born” in the portal area and migrate along a trajec-
tory leading to the hepatic veins? This so-called stream-
ing liver hypothesis was first advocated by Gershom 
Zajicek and colleagues (reviewed in [2]); examining the 
location of labeled hepatocytes in intact adult rat livers 
over time after a single injection of tritiated thymidine, 
they suggested that hepatocytes moved at a speed of 
over 2 μm/day from the periportal region to the central 
vein. A recent murine study by Furuyama and col-
leagues [3] (reviewed in [4]) appears to support the idea 
that hepatocytes migrate centrifugally from portal areas 
(Figure 1.1). They examined the expression of the embry-

for continued tumor propagation and metastasis, and a 
number of phenotypic markers have been proposed for 
their identification.

Liver turnover and regeneration

Kinetic organization

The healthy liver in adults is mitotically quiescent with 
levels of proliferation suggesting a turnover time for 
hepatocytes in excess of a year. Nevertheless, there is 
still considerable debate as to how the liver is organized. 
Most studies concur that hepatic stem cells are located 
in the periportal region; for example, in the mouse,  
bromodeoxyuridine (BrdU) pulse-chase analysis follow-
ing two rounds of acetaminophen intoxication has 
observed so-called label-retaining cells (LRCs), consid-
ered to be slowly dividing progenitor cells, as both inter-
lobular cholangiocytes and peribiliary hepatocytes [2]. 

Figure 1.1  Top: Strategy of the genetic lineage-tracing 
study employed by Furuyama et al. [3] using tamoxifen-
induced Cre-mediated cell tracking using Sox9IRES-CreERT2; 
Rosa26R mice. Bottom: Schematic illustrating the spread of 
X-gal staining after 8-week-old mice were injected with 
tamoxifen. After one day, only intrahepatic bile duct cells are 

labeled, but later X-gal-positive hepatocytes gradually spread 
from the portal tracts to the central veins, thus supporting 
the streaming liver hypothesis. See Alison and Lin [4] for 
further details. (Source: Alison and Lin. Hepatology 2011, 53: 
1393–1396 [4]). (Color plate 1.1)
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(mtDNA)-encoded cytochrome c oxidase (CCO) enzyme, 
all sharing an identical neutral mutation in the CCO 
gene indicating derivation from a single cell. Signifi-
cantly, these CCO-deficient patches were all connected 
to portal areas and had a portal vein–to–hepatic vein 
orientation (Figure 1.2), suggesting a “streaming” nature 
but without providing information of whether they are 
derived from a periportal progenitor cell or an inter-
lobular biliary cell.

Liver regeneration

The regenerative capacity of the liver is impressively 
demonstrated when two-thirds of the rat liver is surgi-
cally removed (a 2/3 partial hepatectomy, or 2/3 PH) 
and the residual liver then undergoes waves of hyper-
plasia and hypertrophy to restore preoperative liver 
mass within about 10 days [1, 2]. After a 2/3 PH in 
healthy adult rats, all the normally proliferatively qui-
escent hepatocytes leave G0 to semisynchronously enter 
the cell cycle. DNA synthesis is first initiated in the peri-
portal hepatocytes at about 15 hours after PH, with a 
peak in the hepatocyte DNA synthesis labeling index of 
∼40% at 24 hours. Midzonal and centrilobular hepato-
cytes enter DNA synthesis at progressively later times, 
but the hyperplastic response in hepatocytes is essen-
tially complete by 96 hours, to be followed by a phase 
of hepatocyte hypertrophy. Elegant labeling studies 
have identified three groups of regenerative hepatocytes 
in mice, with all cells dividing at least once, but with the 
periportal hepatocytes that divide first dividing maybe 
three or more times after PH.

As might be expected, age has an adverse effect on 
the response; in old rats (>2 years old), a significant 
number of hepatocytes do not proliferate after PH, 

onic transcription factor Sox9 in the liver. In human 
liver, immunohistochemistry identified interlobular bile 
duct cells as Sox9-expressing cells, and a similar pattern 
was seen in adult mice when a reporter gene, either 
enhanced GFP or LacZ, was knocked into the Sox9 locus. 
Adopting tamoxifen-inducible genetic lineage tracing 
from the Sox9 locus, detecting Sox9-lineage cells by 
X-gal staining, Furuyama et al. [3] found that X-gal posi-
tivity spread out from the portal areas toward the 
hepatic veins until the majority of hepatocytes were 
labeled within 8–12 months. Thus, the paper suggested 
that indeed cells “streamed,” but more importantly 
hepatic replacement was from cytokeratin 7 (CK7)–
Sox9-positive biliary cells, identifying cells within the 
biliary tree as drivers not only of hepatocyte replace-
ment when regeneration from existing hepatocytes is 
compromised (discussed further in this chapter) but 
also of normal hepatocyte turnover. However, there  
is controversy as other studies of mice have failed to 
find evidence for the normal liver parenchyma being 
“fed” from the biliary system. Carpentier et al. [5] also 
employed lineage labeling in mice, this time from Sox9-
expressing ductal plate cells in late embryonic develop-
ment (E15.5), finding that these cells gave rise to 
interlobular bile ducts, canals of Hering, and periportal 
hepatocytes, and that liver homeostasis did not require 
a continuous supply of cells from Sox9 progenitors. 
Iverson et al. [6] have sought to quantify the dynamics 
of mouse liver turnover by lineage labeling following 
activation of an albumin–Cre transgene, calculating that 
0.076% of hepatocytes had differentiated from albumin-
naïve cells over a 4-day period.

In human liver, Fellous et al. [7] have identified clonal 
populations of hepatocytes based upon finding large 
patches of cells deficient in the mitochondrial DNA 

Figure 1.2  (A) A single cytochrome c oxidase (CCO)–deficient patch, appearing to emanate from the portal tract. (B) High-
power magnification illustrates that within the patch there are CCO-positive sinusoid-lining cells (asterisks) indicative of 
different cells of origin from hepatocytes. See Fellous et al. [7] for further details. (Source: Fellous TG et al. Hepatology 2009, 49: 
1655–1663 [7]). (Color plate 1.2)

(A) (B)
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such as Wnt2 and HGF [10, 11]. Moreover, it seems that 
endothelial progenitor cells recruited from the bone 
marrow after PH provide the richest source of HGF [11]. 
Hepatic stellate cells (HSCs) also support liver regenera-
tion and are activated by massive upregulation of delta-
like 1 homology (Dlk1) that represses Pparγ in stellate 
cells [12]. Regenerative competence in mouse and 
human also appears to be maintained by activation of 
telomerase activity in regenerating hepatocytes [13]. 
Micro-RNAs (miRs) are also involved in regeneration 
after PH; for example, in mice there is upregulation of 
miR-21 in the priming phase that targets a proliferation 
inhibitor facilitating cyclin D1 translation, and down-
regulation of miR-378 that targets odc1 messenger RNA 
(mRNA), ornithine decarboxylase activity being essen-
tial for DNA synthesis [14]. In rats after PH, there are 
also dramatic changes in miRs, with upregulation of 
40% of investigated miRs in the priming phase and 
downregulation of 70% of miRs at 24 hours after PH, 
presumably facilitating maximal proliferation [15].

Equally important are the molecular mechanisms that 
curtail the regenerative response, ensuring the liver 
does not overcompensate for lost mass. Transforming 
growth factor beta (TGFβ) produced by stellate cells 
inhibits hepatocyte replication, and several mechanisms 
are involved in its production. In mice, serotonin acts on 
5-HT2B receptors in stellate cells, leading to phosphor-
ylation of JunD via ERK, resulting in recruitment of 
JunD to AP1 binding sites in the promoter region of the 
tgfβ1 gene [16]. The multidomain matrix glycoprotein 
thrombospondin-1 (Tsp1) is also involved in TGFβ1 pro-
duction in mice; Tsp1 is expressed by endothelial cells 
in response to reactive oxygen species (ROS) shortly 
after PH and binds to latent TGFβ1 complexes, convert-
ing them to active TGFβ1 [17]. The IL6 response is nega-
tively regulated through transcriptional upregulation of 
suppressor of cytokine signaling 3 (SOCS3), but SOCS3 
is not crucial for curtailing proliferation, for although 
SOCS3 knockout mice have higher levels of hepatocyte 
proliferation after PH than wild-type mice and restore 
preoperative liver weight 2 days earlier, proliferation 
stops after 4 days and liver weight does not go above 
normal [18]. The Hippo pathway seems particularly 
important for curtailing liver size; the kinases Mst1 and 
Mst2 (the mammalian orthologs of Drosophila Hippo) 
are responsible for phosphorylating the Yes-associated 
protein (Yap) at Ser127, the mammalian ortholog of Dro-
sophila Yorkie, which is a transcriptional activator of cell 
cycle proteins such as Ki-67 and c-Myc – phosphoryla-
tion blocks its ability to translocate to the nucleus [19]. 
Thus, overexpression of Yap in mice leads to massive 
liver weight increases (25% of body weight versus 5% 
normally) [20], and likewise Mst1 and Mst2 double 
knockouts also have massive livers and eventually 
develop HCC [21, 22].

seemingly becoming reproductively senescent. To  
maintain liver homeostasis, the nonparenchymal cells 
(cholangiocytes and endothelial cells) must also expand 
their numbers, and their cell cycle entry is delayed a few 
hours behind that of hepatocytes [2].

Molecular regulation of liver regeneration

Numerous cytokines, growth factors, and signaling 
pathways have been implicated in (1) the initiation 
(priming) of hepatocytes in order to be responsive to 
liver mitogens, (2) the proliferative response itself, and 
(3) the curtailment of the response. The “priming phase” 
in the first few hours after PH, which is probably instru-
mental in the G0 to G1 transition, is associated with the 
upregulation of many genes not expressed in the normal 
liver and is essentially cytokine driven [2], with activa-
tion of transcription factors such as activator protein 1 
(AP1), nuclear factor kappa-light-chain-enhancer of 
activated B (NF-κB), and signal transducer and activator 
of transcription 3 (STAT3) being particularly important. 
The ultimate cause of cytokine accumulation is unclear, 
but enteric lipopolysaccharides may be the master regu-
lator of the innate immune response, and liver injury 
can be associated with a defective intestinal barrier 
leading to exposure to lipopolysaccharides and comple-
ment fragments. Such exposure activates the NF-κB 
pathway in Kupffer cells, resulting in the production 
and secretion of interleukin 6 (IL6) that activates the 
JAK/STAT pathway, leading to the initiation of DNA 
synthesis in hepatocytes. In mice, complement activa-
tion (in particular, C3a and C5a) leads to the recruitment 
of natural killer T (NKT) cells and the production of  
IL4 by these cells [8]. IL-4 maintains IgM levels and 
deposition in the liver, leading to increased C3a and C5a 
accumulation that in turn stimulates liver macrophages 
to produce IL6. The cytokine interleukin 1 receptor 
antagonist (IL1ra) is also important in the early phase of 
regeneration, reducing inflammatory stress and thus 
promoting proliferation [9].

The proliferative response itself appears to be driven 
by a number of growth factors and signaling pathways, 
including IL6, tumor necrosis factor alpha (TNFα), 
hepatocyte growth factor (HGF), amphiregulin, stem 
cell factor (SCF), insulin-like growth factor 1 (IGF1), T3, 
bone morphogenetic protein 7 (BMP7), Wnt, β-catenin, 
Hedgehog (Hh), and phosphoinositide-3 kinase (PI3K), 
although no one factor or pathway appears crucial to 
the process [2]. Some of these signals are autocrine, and 
others are paracrine; for example, in mice sinusoidal 
endothelial cells are involved in hepatocyte regenera-
tion with vascular endothelial growth factor receptor 
(VEGFR)–dependent upregulation of the transcription 
factor Id1 leading to the release of hepatotrophic factors 
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bipotential, what regulates whether they become hepa-
tocytes or cholangiocytes? Boulter and colleagues have 
described the mechanisms in mice governing these criti-
cal cell fate decisions [28]. After biliary cell damage with 
DDC, the intimate association of myofibroblasts with 
HPCs facilitated Notch signaling ensuring biliary dif-
ferentiation in oval cells, in essence recapitulating 
ontogeny. On the other hand, after hepatocyte damage 
with the CDE diet, adjacent macrophages in response  
to engulfing hepatocyte debris were involved in Wnt 
signaling to HPCs that not only turned off Notch  
signaling but also specified hepatocytic differentiation 
in oval cells. On the other hand, in the rat 2-AAF/PH 
model, Notch1 may be important for hepatocytic dif-
ferentiation since exposure to a γ-secretase inhibitor 
delayed the maturation process [36]. HGF signaling is 
also important for the oval cell response: genetic  
deletion of c-met from oval cells in the DDC model 
results in a diminished response with decreased hepa-
tocytic differentiation [37]. Moreover, a failure to express 
stromal cell–derived factor 1 (SDF1) leads to less recruit-
ment of macrophages and associated matrix metal-
lopeptidase 9 (MMP9) secretion that is crucial for oval 
cell migration and liver remodeling (discussed further 
in this chapter). Hh signaling is another important 
pathway, and ligands acting through the receptor 
Patched (Ptc) on murine oval cells and human HPCs are 
required for progenitor cell survival [38]. Perhaps most 

A second tier of regeneration: oval cells and HPCs

Massive acute liver injury, chronic liver injury, or large-
scale hepatocyte senescence results in the activation  
of a reserve or potential progenitor cell compartment 
located within the intrahepatic biliary system [1, 2]. Rep-
licative senescence can occur in conditions such as 
chronic hepatitis and fatty liver disease [23]. In humans 
and mice, the extent of the HPC response is proportional 
to the degree of parenchymal damage [24, 25]. HPCs are 
derived from interlobular biliary cells and/or the canal 
of Hering, and in human liver the canal of Hering 
extends beyond the limiting plate, even perhaps 
throughout the proximate third of the lobule [26].

A number of animal models have been described  
to activate this progenitor response. In rats, a very effec-
tive model has been to pretreat the animals with 
2-acetylaminofluorene (2-AAF) before performing a  
2/3 PH (the 2-AAF/PH protocol) [27]. 2-AAF is metabo-
lized by the hepatocyte’s cytochrome P450 (CYP450) 
system, producing metabolites that form DNA adducts, 
thus preventing hepatocytes from entering the cell cycle 
in response to PH. Under these constraints, oval cells or 
HPCs are activated since they lack the CYP enzymes 
necessary for 2-AAF metabolism. In the mouse, dietary 
regimes are often employed including a choline-deficient, 
ethionine-supplemented diet (the CDE diet) that inflicts 
hepatocyte damage, or a 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) regime that damages cholangi-
ocytes [28]. An oval cell response is also seen when 
hepatitis B surface antigen (HBsAg-tg) mice (a model of 
chronic liver injury) are treated with retrorsine, a pyr-
rolizidine alkaloid that blocks hepatocyte regeneration. 
This effectively abolishes hepatocyte turnover, resulting 
in massive oval cell–driven regeneration [29]. The exact 
location of stem and progenitor cells within the biliary 
tree is unclear, and it is also unclear if all cells in small-
caliber biliary ducts and canals of Hering are capable  
of giving rise to oval cells, but in the mouse a small 
subset (3–4%) of antigenically defined biliary cells that 
express Sox9 give rise to most oval cells in the DDC 
model [30].

A wide range of markers have been used to identify 
ovals cells and HPCs (Table 1.1) [31]. Many factors, often 
produced by cells of a hepatic niche that intimately 
accompanies the reaction, can influence the oval cell–
HPC response. Autocrine and paracrine Wnt signaling 
is clearly involved in the oval cell or HPC response in 
mice [28, 32], rats [33], and humans [28, 34, 35]. In the 
rat 2-AAF/PH model, oval cells display nuclear 
β-catenin and Wnt1 is essential for differentiation of 
oval cells to hepatocytes; exposure to Wnt1 small hairpin 
RNA (shRNA) blocked this differentiation, and oval 
cells generated an atypical ductular reaction – perhaps 
as the default position [35]. As oval cells and HPCs are 

Table 1.1  Some of the markers used in the identification of 
oval cells and HPCs in the damaged mammalian liver.

A6 antigen (mouse marker)
ABCG2/BCRP1 (breast cancer resistance protein)
AFP (alpha fetoprotein)
Cadherin 22
CD24 and CD133
Chromogranin A
CK7 and CK19
c-Kit (CD117)
Claudin7
Connexin 43
Dlk1 (Delta-like protein 1)
DMBT1 (deleted in malignant brain tumor 1)
E-cadherin
EpCAM/TROP1 (epithelial cell adhesion molecule)
flt-3 ligand/flt-3
Fn14 (fibroblast-inducible factor 14-kDa protein; TWEAK 
receptor)
GGT (gamma-glutamyltranspeptidase)
GST-P (placental form of glutathione-S-transferase)
M2-PK (muscle type pyruvate kinase)
NCAM-1/CD56 (neural cell adhesion molecule-1)
PTHrP (parathyroid hormone related peptide)
TACSTD/TROP2 (tumor-associated calcium signal transducer)

Note:  Many of these markers are also expressed on normal 
biliary epithelial cells.
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cytokines such as TGFβ1 and the fibronectin matrix that, 
among other properties, can concentrate cytokines such 
as connective tissue growth factor (CTGF) for which 
oval cells have receptors [47].

Chronic viral hepatitis is, of course, invariably associ-
ated with cirrhosis and hepatocyte senescence [48–50], 
thus activation of HPCs in this setting is common. In  
the fibrous septae that surround regenerative nodules 
(RNs), differentiation of CK19-positive HPCs to form 
buds of intraseptal hepatocytes (ISHs) is often observed 
[51]. In cirrhosis we observed that RNs are invariably 
clonally derived (Figure 1.3), suggesting that they are 
not simply created by fibrotic dissection of the preexist-
ing parenchyma; moreover, they are clonally related to 
the abutting HPCs (Figure 1.3), and thus have been 
derived from them [52]. Thus RNs may well represent 
the further expansion of buds of ISHs.

Stem cells and liver cancer (founders 
and propagators)

Whereas CCs are believed to arise from either estab-
lished biliary ducts or HPCs, the origin of HCCs is more 
problematic. Clearly hepatocytes are the cell of origin of 
many HCCs in experimental models where tumor yield 
is directly related to hepatocyte proliferation or where 
oncogenic transgenes are driven by the albumin pro-
moter. On the other hand, HPC activation is commonly 
seen in models of hepatocarcinogenesis and invariably 
accompanies chronic liver damage in humans, thus 
making it quite likely that HPCs are the founder cells of 
many HCCs [53]. An origin of HCCs from HPCs is often 
suggested because many HCCs contain an admixture of 
mature hepatocyte-like cells and cells resembling HPCs 
[1]. If tumors do arise from HPCs, then this indicates a 
block in HPC differentiation, a process that has been 
termed “stem cell maturation arrest” [54]. This hypoth-
esis is supported by the fact that murine HCCs induced 
by a CDE diet have a mixture of neoplastic phenotypes 
recapitulating stages in normal development, suggest-
ing intermediate states between bipotent oval cells and 
hepatocytes [55]. Likewise in humans, four prognostic 
HCC subtypes have been identified equating to liver cell 
maturational steps [56]. The poorest prognostic groups 
had a significant proportion of either EpCAM+AFP+ cells 
(hepatoblast-like) or EpCAM−AFP+ cells (HPC-like), 
whereas those with EpCAM−AFP− cells (mature 
hepatocyte-like) or EpCAM+AFP− cells (cholangiocyte-
like) had a better prognosis. Gene expression profiling 
has identified a subset of HCCs with a profile consistent 
with an origin from HPCs, and these patients have  
a poor prognosis [57]; moreover, counting of CK19-
positive cells in HCC can identify a poor-prognosis 
group [58] that may be related to an enhanced epithelial-
mesenchymal transition (EMT) [59].

significantly, inflammatory cells produce a range of 
cytokines and chemokines that initiate the response [2, 
32]; SDF1 attracts CXCR4+ T cells, and these cells express 
TWEAK (TNF-like weak inducer of apoptosis) that 
stimulates oval cell proliferation by engaging its recep-
tor Fn14, a 14 kDa transmembrane receptor [39]. Tirnitz-
Parker and colleagues employed the CDE diet and 
found that expression of Fn14 is markedly elevated [40]. 
Fn14 is not a receptor tyrosine kinase, but rather ligand 
occupancy activates NF-κB signaling as shown by the 
presence of active (nuclear) NF-κB in a progenitor cell 
line upon TWEAK stimulation. The early oval cell 
response to the CDE diet was delayed in Fn14 knockout 
mice, although interestingly there were comparable 
numbers of oval cells in wild-type and knockout mice 
after 3 weeks on the CDE diet. Significantly, recom-
binant human TWEAK (rhTWEAK) directly stimulated 
the in vitro proliferation of a progenitor cell line in a 
dose-dependent manner. Other components of the 
inflammatory response that can stimulate oval cells 
include lymphotoxin-β, interferon alpha (IFNα), TNFα, 
and histamine [41]. Resistance to the growth inhibitory 
effects of TGFβ may allow oval cells to proliferate under 
conditions inhibitory to hepatocytes [42].

In terms of negative regulators of the oval cell 
response, the neurofibromatosis type 2 (Nf2) gene 
product Merlin appears critically important [43]. Genetic 
deletion of Nf2 leads to massive oval cell expansion and 
the development of CC and HCC; Merlin appears to 
control the availability of epidermal growth factor 
receptor (EGFR) and other growth factor receptors. Pro-
genitor cells reside in a specialized supportive microen-
vironment known as a niche; not only do oval cells and 
HPCs have such a niche but also this niche seems to 
migrate hand-in-hand with the expansion of oval cells. 
For example, with the CDE diet the activation of stellate 
cells (upregulation of alpha smooth muscle actin [αSMA] 
expression) and deposition of collagen precede the oval 
cell response, suggesting that the extension of the niche 
is a prerequisite for oval cell expansion [44]. In fact, 
mouse and rat models of oval cell activation and HPC 
reactions in humans bear a striking similarity, in terms 
of both the deposition of ECM (particularly laminin) 
and cells (macrophages and αSMA+ myofibroblasts) that 
accompany progenitor reactions suggestive of a stereo-
typical niche [45]. Further support for the idea that the 
ECM adjacent to oval cell reactions is not merely a 
passive bystander comes from studies of the oval cell 
reaction in mice that produce mutated collagen I that is 
highly resistant to MMP degradation [46]; here, a failure 
to remodel collagen stunts the reaction, seemingly 
through a failure to establish a laminin-rich progenitor 
niche. In the 2-AAF/PH model, blocking the activation 
of stellate cells with L-cysteine was a potent suppressor 
of the oval cell response, probably related to loss of 



	 Liver regeneration and fibrosis	 9

changes, eventually resulting in liver failure or the 
development of HCC.

Following liver injury there are a number of cellular 
responses that are key to the fibrotic response, including 
hepatocyte injury, and hepatic macrophages and 
endothelial cells are activated [66]. The cells that are 
primarily responsible for the deposition of ECM are the 
αSMA-positive myofibroblasts that are formed princi-
pally from the activation of the HSCs. Hepatic myofi-
broblasts are proliferative and contractile cells that 
directly secrete collagen matrix, and they have several 
important paracrine mechanisms that increase the pro-
fibrotic environment. Proliferation of hepatic myofi-
broblasts is stimulated by a number of mitogens, 
including platelet-derived growth factor (PDGF), basic 
fibroblast growth factor (bFGF), angiotensin II, VEGF, 
and thrombin. PDGF is a very potent mitogenic stimu-
lus and is released by activated Kupffer cells, sinusoidal 
endothelial cells, platelets, and activated myofibroblasts 

A detailed discussion of cancer stem cells (CSCs) in 
HCC is beyond the scope of this chapter, but a number 
of phenotypic markers have been proposed for their 
isolation including CD13, CD90, CD133, ALDH activity, 
and the side population [60]. As in other organs, HCC 
CSCs seem relatively resistant to therapy, and strategies 
to either reduce ABC transporter function [61–63] or 
induce differentiation [64] have increased CSC sensitiv-
ity. For a detailed discussion, see [65].

Liver f﻿ibrosis

Whatever the mode of chronic liver injury, a stereotypi-
cal wound-healing response occurs that results in a 
series of cellular and extracellular matrix changes, an 
increase in collagen deposition, and a disturbance in the 
liver architecture. In its extreme form, this results in the 
development of cirrhosis with gross architectural distur-
bance, nodule formation, heavy scarring, and vascular 

Figure 1.3  Mitochondrial DNA genotyping indicates that 
regenerative nodules can be derived from CK19-positive 
HPCs. (A) An entirely CCO-deficient nodule (stained blue 
for succinate dehydrogenase activity). (B) Five groups of cells 
(1–5) from the same CCO-deficient nodule; cells (6) from the 
adjacent CCO-deficient ductular reaction, confirmed by CK19 
IHC on the next serial section (C, brown staining), and cells 
(7) from the CCO-positive nodule were laser capture-
microdissected, and the entire mitochondrial genome was 
sequenced. (D) Cell areas 1–5 all contained four different 

transition mutations: 2145G>A, 2269G>A, 12362C>T, and 
15671A>G (black arrows). (E) Cell area 6 from the abutting 
CCO-deficient ductular reaction had exactly the same 
mutations. Heteroplasmy was detected at locations 2145 and 
2269 (arrowheads), while the mutations at locations 12362 
and 15671 were homoplasmic (black arrows). (F) Cell area 7 
from the CCO-positive nodule had no mutation (white 
arrows). See Lin et al. [52] for further details. (Source: Lin 
WR. et al. Hepatology 2010, 51: 1017–1026 [52]). 
(Color plate 1.3)
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the degradation of collagen scar matrix is required to 
enable the development of a ductular reaction. The 
implications are clear that strategies to minimize or even 
reverse liver fibrosis will likely also have an effect upon 
liver regeneration.
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Chapter 2
   Hepatic  i mmunology  
    Gyongyi     Szabo     and     Johanna     Bruneau    
   University of Massachusetts Medical School  ,    Worcester  ,   MA  ,   USA      

        Overview of  l iver  i mmunology 

 The liver is a unique immunological organ due to its 
cellular composition and physiological function (Table 
 2.1 ). Cells of the innate and adaptive immune system 
actively participate in immune responses in the liver, 
recognizing and eliminating pathogens and other 
danger signals and inducing antigen-specifi c adaptive 
immune responses. Another key function of the liver is 
to protect the host from the presence of undesirable 
activated immune cells. Several factors discriminate the 
liver from other organs with respect to immune response. 
The liver is constantly exposed to gut-derived sub-
stances such as antigens, nutrients, and metabolites, as 
well as pathogen-derived immune activation signals 
from the portal circulation. The normal liver immune 
environment promotes immunological tolerance, which 
has long been recognized in the setting of liver trans-
plantation. While the exact mechanisms for this have yet 
to be delineated, the presence of predominantly imma-
ture dendritic cells that induce immune tolerance instead 
of T cell activation and high levels of immuno-inhibitory 
cytokines and mediators (interleukin 10 [IL10], trans-
forming growth factor beta [TGFß], and prostaglandin 

E2 [PGE2]) contribute to this phenomenon. The archi-
tecture of liver sinusoids, with slow blood fl ow and 
close proximity of liver parenchymal cells and immune 
cells, creates a microenvironment for prolonged interac-
tions between these cells that may also be a factor in 
local immune regulation. Finally, the composition of the 
liver T cell and natural killer (NK)–natural killer T 
(NKT) cell populations is markedly different from that 
of the circulation and many organs, with high propor-
tional representation of NK, NKT, and gamma delta ( γ  δ ) 
T cells. 

    Innate  i mmunity 

 Innate immunity provides the fi rst line of host defense 
against invading pathogens. In recent years, it was dis-
covered that in addition to pathogens that trigger an 
innate immune response, the innate immune response 
can also recognize and respond to damaged self-
molecules. A coordinated cascade of events occurs that 
involves recognition of exogenous or endogenous 
danger signals by various pattern recognition receptors. 
This leads to a rapid induction of intracellular signaling 
cascades that direct the production of pro-infl ammatory 

   Summary  

 The immune system is an integral part of the liver as an organ. In addition to the classical roles of hepatocytes 
and biliary cells in metabolism and digestion, the presence of a broad range of immune cells in the liver contributes 
to its basic functions by sensing and reacting to external and endogenous danger signals. Several unique features 
characterize immune responses in the liver including the composition of immune cell types, the local tissue envi-
ronment that allows close interaction between parenchymal cells and immune cells, and the gut-derived signals 
arriving from the portal blood. Integration of these components is pivotal for immunological homeostasis in the 
liver and orchestration of effective immune responses for the protection of the host. 

Viral Hepatitis, Fourth Edition. Edited by Howard C. Thomas, Anna S.F. Lok, Stephen A. Locarnini, and Arie J. Zuckerman.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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nonclassical subsets, which vary in phenotype, function, 
and morphology. The classical subset, which comprises 
approximately 90% of circulating monocytes, expresses 
high levels of CD14 (CD14 +  + ). The nonclassical subset 
is distinguished by expression of CD16 (Fc γ  receptor III) 
and variable CD14 expression  [5] . CD14 + CD16 +  mono-
cytes have been identifi ed as the main producers of 
tumor necrosis factor alpha (TNF α )  [6]  and secrete more 
IL10 in response to lipopolysaccharide (LPS) stimula-
tion than CD14dimCD16 +  or CD14 + CD16 −  cells  [5] . 
It has been reported that the pro-infl ammatory 
CD14 + CD16 +  monocyte population is expanded in the 
circulation and liver of patients with chronic liver 
disease. In addition, the investigators report that 
CD14 + CD16 +  cells directly activate hepatic stellate cells, 
but CD14 + CD16 −  cells do not  [7] . Therefore, the 
CD14 + CD16 +  monocyte subset may contribute to an 
infl ammatory and pro-fi brogenic intrahepatic microen-
vironment, which would affect the progression of liver 
disease. Another nonclassical monocyte subset, 
CD14 − CD16 +  cells, is more responsive to Toll-like recep-
tor 8 (TLR8) stimulation than CD14 + CD16 −  cells  [8] . 
Phenotypically, monocytes of the classical lineage are 
larger and denser, capable of phagocytosis and produc-
tion of ROS. In contrast, nonclassical monocytes are 
smaller, less dense cells, with better antigen presentation 
function  [9–12] . 

 Circulating monocytes are recruited into the target 
tissue by a coordinated sequence of signals. Chemok-
ines regulate the expression of a number of integrins, 
which are cell surface receptors that interact with adhe-
sion molecules on the endothelial cells ’  surface, ena-
bling the monocyte to attach to and roll along the 
endothelium. Integrins are also involved in polarization 
of the monocyte, which allows it to extravasate into the 
tissue. Once inside the tissue, monocytes differentiate 
into dendritic cells or macrophages  [13] . Since mono-
cytes are a heterogeneous cell population, as described 
in this section, the stage at which they are recruited into 
the tissue may infl uence the fi nal cell type  [2] . 

 Macrophages are an important component of immu-
nological defense. Firstly, they act as an integral part of 
the innate immune response by engulfi ng pathogens 
and killing them via the release of ROS. Recognition of 
these pathogens also stimulates macrophages to release 
cytokines and chemokines, which recruit other cells to 
the site of infection. Macrophages also contribute to the 
adaptive immune response by processing and present-
ing antigens to activate T and B cells, components of the 
adaptive immune response  [14] . Due to their extensive 
phagocytic capacity, macrophages also play an impor-
tant part in the clearance of cellular debris that arises 
from necrosis and apoptosis  [2] . Macrophages secrete a 
number of different classes of molecules depending on 
their activation status, including pro-infl ammatory 

cytokines and/or type I interferons that comprise innate 
immunity. Innate immunity is also critical in triggering 
and modifying adaptive immune responses  [1] . 

  Cell  p opulations and  m ediators in the  i nnate 
 i mmune  r esponse 

  Monocytes,  m acrophages, and  K upffer  c ells 

 Monocytes and macrophages represent the major con-
stituents of the innate immune cell population. These 
cells originate in the bone marrow and can be rapidly 
recruited to sites of infl ammation due to their chemotac-
tic and cell migration properties. Circulating monocytes 
differentiate into macrophages at sites of infection, 
injury, or infl ammation in the tissues  [2] . Kupffer cells 
are the resident macrophages in the liver; they contrib-
ute to elimination of gut-derived pathogens and play 
important roles in various liver diseases, including alco-
holic and nonalcoholic liver diseases  [3, 4] . 

 Monocytes, macrophages, and Kupffer cells are the 
classical “phagocytic” immune cells that uptake patho-
gens or cell debris by phagocytosis, endocytosis, or 
pinocytosis. The phagocytic capacity of these cells 
also includes production of reactive oxygen species 
(ROS) that contribute to their antibacterial effector func-
tion and production of pro-infl ammatory cytokines. 
Monocytes, macrophages, and Kupffer cells have over-
lapping functional repertoires where macrophages and 
Kupffer cells are most potent in pro-infl ammatory 
cytokine and ROS production and relatively ineffi cient 
in antigen presentation compared to circulating blood 
monocytes  [2] . 

 Monocytes migrate from the circulation into the 
tissue, where they differentiate into tissue-specifi c mac-
rophages, such as Kupffer cells in the liver. There are 
two main populations of monocytes, the classical and 

 Table 2.1       The liver is a unique immune organ. 

The largest immune organ

 Unique biological properties 
    •    Unique architecture and vascular structure that facilitate 

interaction between parenchymal and nonparenchymal cells 
and circulating immune cells 

  •    Constant exposure to gut-derived antigens and 
pathogen-derived substances from the portal circulation   

 Unusual composition of lymphocyte subsets 
    •    NK cells, NKT cells, and T cell receptor repertoire ( γ  and  δ )   

 Promotes immune tolerance 
    •    IL10, PGE 2 , and TGFß 
  •    Diversity of professional and nonprofessional antigen-

presenting cells   
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cytes and macrophages. Dendritic cells effi ciently uptake 
and process antigens due to their rich subcellular endo-
somal compartments. The processed antigenic peptides 
are presented in the context of major histocompatibility 
complex class (MHC) II molecule and co-stimulatory 
signals to initiate activation of naïve CD4  +   T lym-
phocytes  [24] . 

 Dendritic cells can be separated into various subtypes 
based on their origin, cell surface marker expression, 
and functional capacity. Myeloid DCs are derived from 
the bone marrow and are present in both murine and 
human livers. Blood monocytes can differentiate into 
monocyte-derived myeloid dendritic cells upon  ex vivo  
stimulation with IL4 and granulocyte-macrophage 
colony-stimulating factor (GM-CSF). Differentiation of 
circulating monocytes into dendritic cells is triggered  in 
vivo  by the tissue environment. Both conventional and 
monocyte-derived DCs (mDCs) produce the immu-
nomodulatory cytokines IL12 and IL10 that contribute 
to the effi ciency of their T cell activation and antigen-
presenting capacity. The mDC1 (myeloid CD1c +  DC) 
represents the largest population of myeloid DCs (also 
known as conventional DCs) in the blood, which 
produce infl ammatory cytokines and chemokines upon 
stimulation  [25] . The mDC2 (myeloid CD141 +  DC or 
myeloid BDCA3 +  DC) represents a minor subset of 
blood leukocytes that have recently been identifi ed as 
the human homologue of the mouse CD8 +  DC subset 
 [26, 27] . mDC2s are major producers of IL12 and cross-
present antigen for CD8 class 1–restricted cytotoxic T 
lymphocyte (CTL) responses under TLR3 ligation  [28, 
29] . Plasmacytoid DCs (pDCs) represent a small popula-
tion in the peripheral blood but are enriched in the liver; 
they are the most potent producers of IFN α  in viral 
infections  [30] . 

 Both mDCs and pDCs are present in the liver in an 
immature phenotype that is characterized by a high 
capacity to uptake antigens but relatively low T cell 
activation potential. Compared to other tissues, the 
majority of DCs in the liver possess an immature pheno-
type. This phenomenon has been attributed to the state 
of “immune tolerance” in the liver. Pathogen-derived 
signals, in the presence of infl ammation, rapidly induce 
maturation of immature DCs in the tissue. During the 
maturation progress, DCs change their phenotype and 
increase surface expression of T cell co-stimulatory mol-
ecules, resulting in their superior antigen presentation 
and T cell activation capacity  [30, 31] .  

   NK  and  NKT   c ells 

 NK and NKT cells are lymphocytes that, unlike B and 
T cells, do not express an antigen receptor with somatic 
diversifi cation  [32] . Human NK cells express CD56 and 
CD16 but lack CD3. NK cells constitute up to 50% of the 

cytokines such as IL1 β , TNF α , and IL6; anti-infl ammatory 
cytokines IL10 and TGF β ; chemokines; and proteolytic 
enzymes  [15] . 

 Classically activated macrophages (also referred to as 
M1 macrophages) are generated in response to Th1 
cytokines, the most important activator being interferon 
gamma (IFN γ )  [14, 16] . IFN γ  activates IFN regulatory 
factor (IRF) transcription factors, including IRF1. IRF1 
upregulates IFN α , IFN β , and inducible nitric oxide syn-
thase (iNOS), increasing the antiviral and antimicrobial 
properties of the affected cell  [14] . This cell type secretes 
a number of infl ammatory cytokines that amplify the 
Th1 immune response. Classical macrophages are able 
to kill intracellular pathogens by producing ROS and 
nitric oxide  [17] . These cells are an important element in 
the innate immune response in addition to being potent 
mediators of infl ammation  [18] . 

 Alternatively activated macrophages (also known as 
M2 macrophages) are generated in response to Th2 
cytokines IL4 and IL13  [15] . Activation along this 
pathway enhances endocytic antigen uptake and pres-
entation, eosinophil involvement, and granuloma for-
mation that is required for an effi cient response to 
parasitic infection or extracellular pathogens  [14] . This 
cell type is distinct from classical macrophages in that 
they do not produce nitric oxide  [17] . 

 Macrophages play an important role in liver fi brosis. 
Macrophages produce the pro-fi brotic cytokine TGF β  
 [15, 17] . In addition, alternatively activated macro-
phages may be involved in production of the extracel-
lular matrix  [17] . However, current evidence suggests 
that liver macrophages act as regulators of fi brosis and 
fi brogenesis  [19] . 

 Kupffer cells are liver resident macrophages. They 
account for approximately 80% of the body ’ s macro-
phage population  [20] , and constitute approximately 
20% of the nonparenchymal cells in the liver  [21] . 
Kupffer cells are localized to the sinusoidal vascular 
space in the periportal area. In this location, they are 
able to clear endotoxins, microorganisms, and cellular 
debris from the portal circulation entering the liver  [20, 
21] . Kupffer cells act cooperatively with neutrophils 
to eliminate pathogens from the blood  [20, 22] . In addi-
tion, Kupffer cells are important producers of cytokines 
and chemokines in the liver following injury or endo-
toxemia  [23] .  

  Dendritic  c ells and  a ntigen  p resentation 

 Dendritic cells (DCs) are the main type of antigen-
presenting cells in the immune system that uptake 
antigens, induce antigen-specifi c T cell activation, 
and produce infl ammatory and immunomodulatory 
cytokines. DCs are 10 times more potent at antigen 
presentation and T cell activation compared to mono-
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the liver T cell population  [21] . It has been shown that 
 γ  δ  T cell numbers increase in patients with viral hepatitis 
but not in those with nonviral hepatitis  [32] . It has also 
been reported that hepatic  γ  δ  T cells are elevated in mice 
with viral infection or liver tumors  [31, 32] , indicating 
that this cell type plays a role in immune surveillance in 
the liver.  

  Neutrophil  l eukocytes 

 Neutrophil leukocytes are the fi rst line of defense in 
most bacterial infections and in tissue damage. Regu-
lated expression of a cadre of adhesion molecules 
permits leukocytes to rapidly invade infl amed tissue 
from the microvessels of the circulation  [33] . Neutrophils 
are highly chemotactic and exert direct antibacterial 
effects through their expression of elastase, myeloper-
oxidases, and ROS. Although neutrophils are primarily 
involved in the clearance of infection, they have also 
been implicated in the initiation of tissue damage in 
alcoholic liver disease and sepsis  [23] .  

  Cytokines,  i nterferons, and  c hemokines 

 Cytokines, interferons, and chemokines are soluble 
protein “messengers” and executors of innate and adap-
tive immune responses. Cytokines are soluble signaling 
molecules that provide communication between differ-
ent cells in the tissue, in the systemic circulation, and in 
distant organs; they have paracrine and autocrine 
effects. The interleukin family of cytokines can be 
divided into various categories of cytokines that promote 
infl ammation including IL1 α , IL1ß, IL6, and several 
other types of cytokines such as IL17. IL10 is an anti-
infl ammatory cytokine that also has negative effects on 
antigen-presenting functions of innate immune cells 
and directly inhibits T cell proliferation. Other cytokines 
such as TNF α , IL12, IL18, IL33, IL21, and IL22 have 
immunoregulatory functions  [34] . 

 The pro-infl ammatory cytokine TNF α  is primarily 
synthesized by monocytic cells, including macrophages, 
Kupffer cells, and microglia. There are two receptors for 
TNF α , TNF receptor 1 (TNFR1) and TNF receptor 2 
(TNFR2). TNFR1 is expressed on most tissues, while 
TNFR2 is expressed mainly on immune cells. TNF α  is 
released during infection or trauma, and is able to gen-
erate a cytokine cascade  [35] . Several studies have noted 
that TNF α  is an important mediator in the development 
of nonalcoholic fatty liver disease (NAFLD) and nonal-
coholic steatohepatitis (NASH) in both humans and 
animals  [36] . 

 The IL1 family of cytokines includes IL1 α , IL1 β , IL18, 
IL33, and the IL1 receptor antagonist (IL1RA). These 
cytokines have important roles in the innate and adap-

hepatic lymphocyte population in humans, compared to 
5–20% in the peripheral circulation  [31] . In addition to 
their increased numbers, liver-derived NK cells also 
exhibit enhanced cytotoxic capacity against tumor cells 
compared to splenic and peripheral blood NK cells 
derived from rodents or humans  [32] . 

 NK cell function is regulated by a balance between 
stimulatory and inhibitory receptors that are constitu-
tively expressed on the cell surface. NK cells are inacti-
vated when inhibitory receptors bind to MHC I receptors 
on the target cell  [32] . NK cells become activated when 
a cell with abnormal expression of MHC I or stress-
related proteins is detected. Upon activation, NK cells 
release granules that lyse the target cells, or they induce 
apoptosis via engagement of the  t umor necrosis factor–
 r elated  a poptosis- i nducing  l igand (TRAIL)  [31, 32] . 

 Hepatic NK cells are important mediators of the 
innate immune response against tumors, viruses, intra-
cellular bacteria, and parasites. Decreases in the number 
of NK cells are associated with progression of hepatocel-
lular carcinoma  [32]  and chronic hepatitis C virus (HCV) 
infection  [31] . Activated NK cells also play a role in liver 
injury and repair by controlling the balance between 
pro-infl ammatory and anti-infl ammatory cytokines in 
the liver microenvironment  [21] . 

 NKT cells express T cell markers as well as NK cell 
markers. Classical NKT cells (also known as invariant 
NKT or iNKT cells), which are CD1d dependent, are 
capable of producing type I and type II cytokines. 
Similar to NK cells, iNKT cells can induce cell lysis via 
perforin or the Fas ligand. Nonclassical NKT cells, 
which are CD1d independent, produce only type I 
cytokines. The number of NKT cells is enriched in the 
liver, comprising up to 10% of the liver lymphocyte 
population  [32] . NKT cells recognize nonpeptide anti-
gens such as lipid and glycolipid and, when stimulated, 
are able to rapidly secrete large amounts of IFN γ  and 
IL4, infl uencing the balance between a pro- and anti-
infl ammatory microenvironment in the liver  [21] . These 
characteristics suggest that NKT cells are involved in 
connecting the innate and adaptive immune responses 
in the liver  [32] . NKT-mediated cytotoxicity has been 
identifi ed as a key factor in experimental hepatitis 
models induced by concanavalin A and endotoxin. NKT 
cells are also important in protecting against liver infec-
tion. NKT- or CD1-defi cient mice are more susceptible 
to certain viral infections, and NKT cells activated by 
the CD1d ligand downregulate HBV replication via 
induction IFN γ  secretion  [21] . 

  γ  δ  T cells are an alternative T cell type that express a 
 γ  δ  T cell receptor instead of the more common  α  β  T cell 
receptor  [31] . These cells recognize stress proteins and 
nonprotein antigens. Although their number is limited 
in the circulation, they comprise between 15 and 25% of 
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  Complement 

 The complement system is composed of soluble and 
membrane-bound proteins that associate in the form 
of a “cascade.” Activation of the complement cascade 
leads to the assembly of a pore-forming structure known 
as the membrane attack complex (MAC) on the surface 
of the target cell. There are three separate pathways in 
the complement cascade, each of which is specifi c for 
different targets: the classical pathway, the lectin 
pathway, and the alternative pathway. The classical 
pathway recognizes antibody-bound targets, such as 
immune complexes and dead cells. The lectin pathway 
recognizes mannose-binding lectin (MBL) bound to car-
bohydrate molecules on bacterial cells. The alternative 
pathway is activated by foreign agents such as bacteria, 
viruses, and fungi  [32, 44] . 

 Complement proteins are involved in maintaining 
homeostasis through tissue repair and regeneration as 
well as through infl ammation. Dysregulation of the com-
plement cascade is implicated in a number of autoim-
mune disorders, including rheumatoid arthritis, systemic 
lupus erythematosus, and multiple sclerosis. Comple-
ment proteins are involved in clearance of debris, thereby 
reducing exposure to potential auto-antigens. Comple-
ment also functions to maintain B cell tolerance, which 
reduces the production of auto-antibodies  [45] . Activa-
tion of the complement cascade has been found in alco-
holic liver disease; mice defi cient in complement C3a or 
the complement receptor are partially protected in the 
early phase of alcoholic liver disease  [46] . 

 The complement cascade is a critical element in the 
immune system, and the liver plays a vital role in main-
taining that system. The liver is the primary site of com-
plement protein synthesis. Pro-infl ammatory cytokines 
secreted during an infl ammatory response such as IL6, 
IFN γ , and TNF α  stimulate hepatocytes to produce com-
plement proteins. Hepatocytes also synthesize the com-
plement regulatory proteins C1 inhibitor, factor H, and 
factor I. C3a and C5a are critical for liver regeneration 
after injury. Complement can also contribute to the 
pathogenesis of liver disorders such as liver fi brosis and 
alcoholic liver disease  [32, 45] . HCV has been shown to 
decrease C3 levels both  in vivo  and  in vitro   [47] .   

  Infl ammation in  l iver  d iseases 

 Infl ammation is the response of the innate immune 
system to danger signals. Infl ammation is triggered by 
recognition of danger signals, which induces an infl am-
matory response; this process is normally self-limited 
with resolution of the infl ammation. In all chronic liver 
diseases, whether induced by viral hepatitis, metabolic 
factors, or alcohol abuse, persistent insult prevents 

tive immune response. The IL1 family members signal 
through related receptors that include an extracellular 
immunoglobulin domain and a cytoplasmic Toll–IL1 
receptor (TIR) domain. When the ligand binds to 
the receptor, a second subunit is recruited; assembly of 
the receptor heterodimer induces signaling  [37] . IL1 and 
IL18 require cleavage by the infl ammasome complex 
(see section below on infl ammation) to produce the bio-
logically active form for secretion. IL1 β  increases the 
expression of adhesion markers on endothelial cells, 
which work in conjunction with chemokines to induce 
the migration of immune cells from the circulation into 
the target tissue  [38] . Members of the IL1 family play an 
important role as co-stimulators of T cells. For example, 
IL33 enhances Th2 responses; IL18, in the presence of 
IL12, enhances Th1 response by producing IFN γ ; 
however, in the absence of IL12, it enhances the Th2 
response by producing IL4  [38] . 

 Interferons are the fi rst line of defense against viral 
infections in innate immunity and are produced by 
immune cells as well as some parenchymal cells, includ-
ing hepatocytes in the liver. Type I IFNs include IFN α  
and IFNß; Type II IFN, IFN γ , is a major immunoregula-
tor; and the recently discovered Type III IFNs, also 
called IFN λ s, include IL28a, IL28b, and IL29. Type I and 
Type III interferons have direct antiviral effects, while 
IFN γ  is an immunomodulator that activates and ampli-
fi es innate and adaptive immune responses  [39] . Recent 
clinical data identifi ed that several single-nucleotide 
polymorphisms (SNPs) near the  IL28  gene are strongly 
associated with HCV clearance during natural viral 
clearance as well as in response to therapy with IFN α  
plus ribavirin  [40, 41] . 

 The family of chemokines includes a large array of 
mediators that direct immune cell traffi cking, recruit-
ment, and homing to various tissues in a cell-specifi c 
manner  [42] . Chemokines are separated into four fami-
lies based on the pattern of cysteine residues. The CC 
chemokine family includes RANTES, which attracts T 
cells, and monocyte chemoattractant protein-1, which 
provides the signal for monocytes to migrate from the 
bloodstream into tissue to differentiate into macro-
phages. The CXC family includes IL8, which targets 
neutrophils, monocytes, and mast cells. Fractalkine is 
the only member of the CX3C family. The fi nal family, 
XC, includes lymphotactin and SCM-2 β . Chemokines 
exert their effects by binding to G protein–coupled 
receptors (GPCRs). The biological effect of the 
chemokine–receptor binding depends on the coupling 
of the different G proteins within the receptor itself  [43] . 
Chemokines are produced by both parenchymal and 
immune cells in the liver; their cell-specifi c effect is pro-
vided by the cellular expression of the respective chem-
okine receptors  [42] .  
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  Figure 2.1         Progression of chronic liver disease. HBV: hepa-
titis B virus; HCV: hepatitis C virus. 
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  Figure 2.2         Danger signals and their recognition. 
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resolution, resulting in chronic infl ammation that leads 
to chronic liver disease, fi brosis, and cirrhosis (Figure 
 2.1 ). The three determining stages of infl ammation are 
recognition, response, and resolution. 

  Immune recognition of danger signals occurs with the 
help of pattern recognition receptors (PRRs) (Figure  2.2 ). 
The major families of PRRs are Toll-like receptors (TLRs); 
the RIG-I-like receptors (RLRs), including RIG-I and 
MDA5; the NOD-like receptors (NLRs), such as NALP 
and IPAF; as well as other intracellular sensors (Figure 
 2.3 )  [1, 48–51] . While initial discovery of TLRs was made 

in innate immune cells, TLRs are expressed and func-
tionally active in virtually all cell types in the liver  [52] . 

   Pathogen-associated molecular patterns (PAMPs) 
represent foreign danger signals that the host recognizes 
as “exogenous danger.” In “sterile” infl ammation asso-
ciated with tissue injury, damaged host cells release 
damage-associated molecular patterns (DAMPs) that 
are recognized by the same repertoire of TLRs and PRRs 
as exogenous danger signals. In certain pathologies, 
PAMPs and DAMPs can both be involved in and amplify 
infl ammatory responses. 

 TLRs are evolutionarily conserved sensors of PAMPs. 
Of the 13 TLRs, most are functionally active in humans. 
TLRs expressed on the cell surface (TLR1, TLR2, TLR4, 
TLR5, and TLR6) recognize extracellular PAMPs, while 
intracellularly localized TLRs (TLR3, TLR7, TLR8, and 
TLR9) sense nucleic acid sequences (Figure  2.4 )  [1] . The 
cytoplasmic TIR domain of TLRs interacts with the TIR 
domain of adapter molecules such as the common 
adapter MyD88 utilized by all TLRs except for TLR3. 
MyD88 recruitment triggers downstream signaling via 
IRAK1/4 kinases and IKK kinase activation to culmi-
nate in NF- κ B activation and induction of pro-
infl ammatory cytokine genes. TLR3 and TLR4 utilize 
the TRIF adapter that activates IKK ε /TBK, leading to 
IRF3 or IRF7 phosphorylation and, after their nuclear 
translocation, induction of Type I IFNs  [48, 53] . TLR4 
recognizes endotoxin derived from Gram-negative bac-
teria, TLR2 senses microbial lipopeptides, while TLR1 
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  Figure 2.3         Activation of the infl ammasome by PAMPs and 
DAMPs. PAMPs: pathogen-associated molecular patterns; 
ATP: adenosine triphosphate; MSU: monosodium urate; 
CPPD: calcium pyrophosphate dihydrate; TLR: Toll-like 
receptor; LPS: lipopolysaccharide; MDP: muramyl dipeptide; 

ASC: apoptosis-associated speck-like CARD domain-
containing protein; NALP: NACHT-LRR-PYD-containing 
protein; NOD: nucleotide-binding oligomerization domain-
containing protein; SREB: sterol regulatory element-binding 
protein.  (Color plate 2.1)  
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  Figure 2.4         Intracellular sensors of viral infection. dsRNA: 
double-stranded RNA: ssRNA: single-stranded RNA; 
dsDNA: double-stranded DNA; MAVS: mitochondrial 
antiviral-signaling protein; TRIF: TIR domain-containing 
adapter-inducing interferon- β ; MDA5: melanoma 

differentiation-associated protein 5; IRAK: interleukin-1 
receptor-associated kinase; TRAF: TNF receptor-associated 
factor; IRF: interferon regulatory transcription factor; TBK: 
TANK binding kinase; IKK: IkappaB kinase.  (Color plate 2.2)  
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activation. The second signal triggers functional infl am-
masome activation by an infl ammasome ligand  [75, 76] . 
Infl ammasome ligands include both pathogen-
associated (PAMPs) and endogenous danger molecules 
(DAMPs)  [73–76] . DAMPS are released from activated, 
damaged, or dying cells and represent a broad range of 
molecules including HMGB1, fi bronectin, and heat 
shock proteins, among others  [82] . The four main pro-
totypes of infl ammasomes are NLRP1 (NALP1), NLRP3 
(NALP3, or cryopyrin), NLRC4 (IPAF), and AIM2  [76] ; 
while each of these has different ligand recognition sites 
and utilization of adapter molecules, all lead to caspase-1 
activation. 

 There is increasing evidence for the involvement of 
the infl ammasome complex in different types of liver 
diseases, and their potential as targets for disease modi-
fi cation is an emerging fi eld in hepatitis research  [83] . 
For example, infl ammasome activation was found in 
acetaminophen-induced liver disease as well as in 
NASH  [84–86] . 

 RNA helicases such as RIG-I and MDA5 are another 
important intracellular pattern recognition receptor 
family. These receptors sense double-stranded RNA and 
induce Type I IFNs via the mitochondrial antiviral-
signaling protein (MAVS) (also known as IPS) adaptor 
 [49] . Translational research elegantly identifi ed RIG-I as 
a target of the HCV serine protease NS3/4  [87] , and now 
successful therapies are entering clinical practice to cure 
disease (Figure  2.4 ). Decreased expression and function 
of MAVS were also found in NASH, linking decreased 
Type I IFN production with fatty liver disease  [88] . 

 Depending on the expression profi le of TLRs, other 
pattern recognition receptors and the components of 
the intracellular signaling pathways determines the 
response of individual cells to danger signals. Expres-
sion of pattern recognition receptors is not limited 
to immune cells in the liver. Essentially any of the 
cell types in the liver have some form of pattern recog-
nition system that enables them to sense danger 
signals  [32] . 

 Resolution of infl ammation is determined by the 
balance of pro- and anti-infl ammatory cytokines and 
mediators elicited by the initial danger signal. The same 
TLR ligands that induce pro-infl ammatory cytokines in 
the early phase of infl ammation also trigger anti-
infl ammatory mediators such as IL10 and TGFß that 
downregulate the initial infl ammation to establish 
homeostasis  [34] .   

  Adaptive  i mmunity 

   CD4  +     T   c ells 

 Activation of T lymphocytes is largely dependent on 
their interactions with antigen-presenting cells (APCs) 

and TLR6 combined with TLR2 distinguish between 
triacyl- and diacyl-lipopeptides  [54] . TLR3 recognizes 
viral double-stranded RNA, and bacterial fl agellin stim-
ulates TLR5  [55, 56] . TLR7 and TLR8 are triggered by 
viral single-stranded RNA  [57] , and TLR9 recognizes 
prokaryotic CpG-rich DNA  [58] . 

  All TLRs are broadly expressed in the liver in diverse 
cell populations. Kupffer cells express TLR4, TLR2, 
TLR3, and TLR9  [59–61] , and stellate cells can be acti-
vated via TLR2, TLR4, and TLR9  [62, 63] . Liver sinusoi-
dal endothelial cells express TLR4  [64, 65] , and primary 
cultured hepatocytes express mRNA for all Toll-like 
receptors of which TLR2, TLR3, TLR4, and TLR5 are 
expressed at low levels and show weak responses  in vivo  
 [66, 67] . LPS, a component of Gram-negative bacteria, is 
a strong activator of innate immune responses via the 
TLR4 complex because of its lipid A portion  [68] . TLR4 
cannot directly bind LPS, and the binding of LPS to the 
co-receptors CD14 and MD2 facilitates activation of 
TLR4. CD14, a GPI-anchored protein, facilitates the 
transfer of LPS to the TLR4–MD2 receptor complex that 
modulates LPS recognition  [69] . MD2 associates with 
TLR4 and binds LPS directly to form a complex with 
LPS in the absence of TLRs  [70] . The association between 
LPS and CD14 can be further facilitated by LPS-binding 
protein (LBP)  [71] . 

 NLRs are sensors of the infl ammasome complex that, 
upon activation, lead to caspase-1 cleavage. The acti-
vated caspase-1 cleaves pro-IL1 to the biologically active 
18 kD IL1ß  [49, 51, 72, 73] . Infl ammasomes are multipro-
tein complexes that sense intracellular danger signals 
via the sensor (NLR) that forms a complex with the 
effector molecule, pro-caspase-1, with or without the 
contribution of an adapter molecule, such as apoptosis-
associated speck-like CARD domain-containing protein 
(ASC)  [73–76]  . Infl ammasome activation leads to auto-
activation of inactive pro-caspase-1 precursor into p20 
and p10 subunits that form the active caspase-1  [67, 
69–71]  resulting in cleavage of pro-IL1 β  and pro-IL18 
into mature forms and inactivation of IL33  [73–77] . As 
a pro-infl ammatory cytokine, IL1ß regulates infl amma-
tion and binds to the IL1 receptor (IL1R) to exert its 
broad biological effects. The IL1R also recognizes IL1 α  
and binds IL1R antagonist (IL1ra). IL1ra is a soluble 
protein induced by the same danger signals as pro-
infl ammatory cytokines, and it is a naturally occurring 
inhibitor of infl ammation by occupying the IL1R without 
inducing activation  [38] . IL18 activates NK cells to 
produce IFN γ   [38, 78, 79] , and IL33 is a chromatin-
associated cytokine of the IL1 family that drives Th2 
responses  [80, 81] . The full-length active IL33 is cleaved 
and inactivated by caspase-1  [77] . 

 Infl ammasome activation is a multistep process where 
the initial signal results in upregulation of infl ammas-
ome expression; this step is mostly initiated by TLR 
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dritic cells. For example, Tregs that inhibit DCs via 
CTLA4 could condition DCs to express indoleamine 
2,3 dioxygenase (IDO), a potent regulatory molecule 
 [99, 100] . 

 Induction of regulatory T cells (Tregs) is typically ini-
tiated by their interaction with immature DCs in a 
cytokine environment enriched for TGFß or IL2. Tregs 
have been identifi ed as major modulators in the immune 
response against HCV infection, and several studies 
suggest that increased number and increased activity of 
the different regulatory T cell populations contribute to 
impaired HCV clearance in chronic HCV infection  [94] .  

   CD17  

 The infl ammatory Th17 T cell phenotype is induced by 
mature DCs with co-stimulation by IL1ß, IL6, IL23, and 
TGFß. The balance between Th17 and Tregs is critical in 
immune homeostasis (Table  2.2 )  [101–106] . In autoim-
mune diseases, as well as in certain liver disease such 
as acute liver injury, liver granulomas, and ischemia–
reperfusion liver injury, predominance of Th17 cells con-
tributes to disease pathology  [103] . Studies suggest that 
administration of Tregs can improve these conditions. 
Consistent with this, Tregs prevent autoimmunity 
and maintain immune tolerance in the form of sponta-
neous liver transplant tolerance by CD25 + CD4 + FoxP3 
Tregs  [105] . 

     B   c ells 

 The role of B lymphocytes is relatively poorly character-
ized in liver diseases compared to other immune cells. 
B cells comprise less than 10% of the human hepatic 
lymphocyte population. The majority of these cells are 
CD5 + , a negative regulator of B cell receptor signaling. 
CD5 +  B cells are signifi cantly increased in the blood and 
liver of individuals with HCV  [31] .   

such as dendritic cells, monocytes, and macrophages. 
Classically, APCs that are exposed to pathogens or other 
antigens will interact with naïve CD4  +   T cells, and the 
type of interaction may determine the development of 
the T cells into a Th1, Th2, T regulatory (Treg), or Th17 
phenotype. Th1 CD4  +   T cells are potent producers of 
IFN γ  and TNF α , while Th2 CD4  +   T cells produce IL4, 
IL10, and IL13. CD4  +   Tregs produce IL10 and TGFß, 
while Th17 cells secrete IL17 and IL22. Induction of the 
Th1 phenotype requires mature DC1 type interaction 
with native CD4  +   T cells and the presence of IL12 and 
IL18 as co-stimulatory molecules. Th2 cells were shown 
to be induced by interaction with DC2 in the presence 
of antigen and IL4  [89] .  

   CD8  +     T   c ells 

 The majority of hepatic T cells are CD8  +  , comprising 70% 
of the liver T cell population compared to 35% in periph-
eral blood  [90] . Functions of CD8  +   T cells include induc-
tion of apoptosis via the Fas ligand, secretion of 
pro-infl ammatory cytokines, and cytolysis. Activated 
CD8  +   T cells are recruited to the liver independent of 
their antigen specifi city; however, proliferation occurs 
only when the specifi c antigen is encountered  [21] . In 
chronic HCV infection, CD8  +   T cells commonly display 
an exhausted phenotype that includes higher expression 
of the inhibitory receptor PD1  [91] .  

  Regulatory  T   c ells 

 The immune system has sophisticated mechanisms in 
place to control overt immune activation in response to 
pathogens and/or antigens. Regulatory T cells (Tregs) 
play a central role in immune balance as mediators of 
peripheral immune tolerance. Tregs have a pivotal role 
in preventing autoimmune processes such as primary 
biliary cirrhosis  [92] , controlling rejection in liver trans-
plantation  [93] , and limiting chronic immune activation 
and infl ammation (e.g., in viral hepatitis)  [94, 95] . 
Natural Tregs arise in the thymus while induced Tregs 
are generated from CD4 +  T cells in the periphery in the 
presence of cytokines and an immunosuppressive tissue 
environment. Naturally occurring forkhead box P3 (Fox 
P3/Cd4 + /CD25 +  Treg) cells display a diverse T cell rep-
ertoire that is specifi c for self-antigens; however, Tregs 
are also induced or converted from activated CD25 +  T 
cells during infl ammatory processes in the peripheral 
tissue  [96] . T regulatory 1 (T R 1) cells mediate their 
immunosuppressive activity via IL10, while T helper 3 
(T H 3) cells produce the immunoinhibitory cytokine 
TGFß  [97] . IL35 is a recently recgonized cytokine that is 
suggested to regulate Treg functions  [98] . In addition to 
suppression by inhibitory cytokines, the basic mecha-
nisms of Treg cell function include suppression of den-

 Table 2.2       The balance between  T  helper type17 (Th17) cells 
and  T  regulatory (Treg) cells is critical in immune 
homeostasis. 

CD4 +  Th17 cells CD4 +  Treg cells

Autoimmune diseases Prevent autoimmunity

Rheumatoid arthritis

Colitis Maintain tolerance

Experimental autoimmune 
encephalitis (EAE)

CD25 +  CD4 +  FoxP3 +  Treg 
mediate spontaneous liver 
transplant tolerance

Liver diseases

Acute liver injury

Liver granulomas

Ischemia–reperfusion
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intact gut barrier and hepatocyte functions, the liver 
“detoxifi es” the portal blood and avoids activation of 
the innate immune system  [89, 108] . It has been shown 
that different types of liver diseases, including alcoholic 
and nonalcoholic liver disease as well as cirrhosis from 
any etiology, result in increased portal levels of LPS 
(which, as mentioned, is a component of Gram-negative 
bacteria), and this has been suggested to result in 
Kupffer cell activation and pro-infl ammatory cascade 
activation in the liver. Sensitization of Kupffer cells to 
gut-derived LPS was found in animal models of alco-
holic and nonalcoholic steatohepatitis  [109, 110] . 

 Additional contributors have also been proposed to 
promote the immunotolerant liver environment, such as 
the unusual composition of T cell populations character-
ized by the large proportion of NK, NKT cells, and  γ  δ  T 
cells  [32, 90] . Additional factors include the relatively 
high expression of IL10, TGFß, and PGE2 in the liver; 
all are anti-infl ammatory mediators that also inhibit 
APC function and antigen-specifi c T cell activation  [20] . 

 Several studies described that activated T cells tend 
to home to the liver, where they die by apoptosis  [111, 
112] . Peripheral T cell activation occurs in most infec-
tions, particularly in viral infections. For example, in 
cytomegalovirus (CMV), Epstein–Barr virus (EBV), 
and herpes simplex virus (HSV) infections, activated T 
cells home to the liver, where hepatocytes may suffer 
from “bystander” damage. Clinically, these viral infec-
tions cause hepatocyte damage and lead to increased 
serum transaminases that are thought to be predomi-
nantly a result of this “bystander” damage from acti-
vated T cells.  
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